132 research outputs found

    Sideslip of the medial rectus muscle during vertical eye rotation

    Get PDF
    PURPOSE: The kinematics of eye rotation is not entirely elucidated despite two centuries of fascination with the deceptively simple yet geometrically complex nature of the movement. Recently, the traditional view that oculorotatory muscles except the superior oblique muscle exert straight pull on the globe has been challenged by the claim that the muscles also go through a connective tissue pulley-like structure that holds them steady during eye rotation. Although earlier studies failed to observe sideslippage at the posterior part of muscles, a finding supportive of the pulley hypothesis, the conclusions should not be taken as conclusive given short-comings in the techniques used in the studies. METHODS: The authors developed a novel method of image analysis to improve spatial resolution and applied the method for investigating the medial rectus muscle, the entire length of which can easily be identified in magnetic resonance images. RESULTS: Contrary to previous reports, vertical sideslippage was observed at the posterior part of the muscle during vertical eye rotation between two tertiary eye positions. Furthermore, the sideslip varied as a function of horizontal eye position, in accordance with the half-angle rule of Listing's law. CONCLUSIONS: These findings are more consistent with the traditional view of the restrained shortest-path model than with the pulley model and have further implications for basic and clinical understanding of ocular kinematics

    Covering one eye in fixation-disparity measurement causes slight movement of fellow eye

    Get PDF
    In the subjective measurement of fixation disparity (FD), the subject fuses contours presented in the peripheral macular areas of both eyes (fusion lock). The position of the eyes relative to each other is monitored by means of two haploscopically seen vertical lines presented in the central macular area, one above and one below a binocularly seen horizontal line. The subject is instructed to shift one of the vertical lines horizontally until the two are aligned, while fixating their intersection with the horizontal line. It has recently been questioned whether the foveolae really are pointed towards the perceived intersection. In this study, we monitored the position of one eye while intermittently covering the fellow eye, while the subject maintained fixation of the intersection of the remaining vertical line and the horizontal line. We found slight differences in position of the measured eye, depending on whether the other eye was covered or not, i.e. depending on the presence or absence of fusion in the macular periphery. These differences were more pronounced in the non-dominant eye

    Preoperative prism adaptation test in normosensoric strabismus

    Get PDF
    In 19 patients with normosensoric esotropia, the squint angles measured with the alternate cover test were compared with those after prolonged prismatic correction of the squint angle and with those after prolonged occlusion of one eye. All patients showed an increase of the squint angle after prism adaptation. The angle was generally smaller after diagnostic occlusion of one eye than after prism adaptation. We assume that the increase in the squint angle after prism adaptation is caused by an anomalous sensorial relationship between the two eyes that was not detected with the usual psychophysical tests. Surgery tailored to the squint angle after prism adaptation seems advisable in patients with normosensoric esotropia

    Binocular summation and other forms of non-dominant eye contribution in individuals with strabismic amblyopia during habitual viewing

    Get PDF
    YesAdults with amblyopia ('lazy eye'), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position. The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes' field locations compared to 8.8% of normals'. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities. Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals

    A Limited Role for Suppression in the Central Field of Individuals with Strabismic Amblyopia.

    Get PDF
    yesBackground: Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that suppression exists when it does not. Methodology/Results: Here we present the results of an experiment conducted with a new method to examine the prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was small. Conclusions: Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual normals, performance with two eyes is better than with the better eye alone in these individuals

    Modeling Brain Resonance Phenomena Using a Neural Mass Model

    Get PDF
    Stimulation with rhythmic light flicker (photic driving) plays an important role in the diagnosis of schizophrenia, mood disorder, migraine, and epilepsy. In particular, the adjustment of spontaneous brain rhythms to the stimulus frequency (entrainment) is used to assess the functional flexibility of the brain. We aim to gain deeper understanding of the mechanisms underlying this technique and to predict the effects of stimulus frequency and intensity. For this purpose, a modified Jansen and Rit neural mass model (NMM) of a cortical circuit is used. This mean field model has been designed to strike a balance between mathematical simplicity and biological plausibility. We reproduced the entrainment phenomenon observed in EEG during a photic driving experiment. More generally, we demonstrate that such a single area model can already yield very complex dynamics, including chaos, for biologically plausible parameter ranges. We chart the entire parameter space by means of characteristic Lyapunov spectra and Kaplan-Yorke dimension as well as time series and power spectra. Rhythmic and chaotic brain states were found virtually next to each other, such that small parameter changes can give rise to switching from one to another. Strikingly, this characteristic pattern of unpredictability generated by the model was matched to the experimental data with reasonable accuracy. These findings confirm that the NMM is a useful model of brain dynamics during photic driving. In this context, it can be used to study the mechanisms of, for example, perception and epileptic seizure generation. In particular, it enabled us to make predictions regarding the stimulus amplitude in further experiments for improving the entrainment effect

    The Upper and Lower Visual Field of Man: Electrophysiological and Functional Differences

    Get PDF
    corecore